Rozšíření pohledu na možnosti akumulace elektřiny i o technologie konvertující elektřinu na jiné produkty umožňuje výrazně zvýšit možnosti uložení elektřiny z obnovitelných zdrojů v době, kdy jejich výroba převyšuje poptávku. Pokud by takové technologie byly ekonomicky efektivní, otevřely by se tím možnosti pro zvýšení podílu OZE v energetickém mixu.
Stručný obsah článku. Celý článek vyšel v časopise Energie 21 č. 1/2015.
Článek porovnává akumulační kapacity jednotlivých možností, nezabývá se způsobem jejich možného využití v rámci elektrizační soustavy.
V případě akumulace elektřiny jsou k dispozici v podstatě tři hlavní možnosti: akumulace elektřiny do plynu (P2G – power-to-gas), do tepla (P2H – power-to-heat) a samozřejmě klasické možnosti akumulace, kde výstupem je opět elektřina (P2P – power-to-power). U prvních dvou se obvykle nepředpokládá zpětná konverze na elektřinu, protože účinnost by byla nízká, i když v případě P2G ještě přijatelná.
- Klasická akumulace elektřiny (P2P) zahrnuje všechny běžně používané způsoby akumulace. Jde především o přečerpávací vodní elektrárny. Kromě nich je v praxi využívána akumulace energie do stlačeného vzduchu, průtokové redoxní baterie (redox-flow) a několik typů akumulátorů (NaS, Pb, NiCd, Li-ion). Jejich celková kapacita je však ve srovnání s přečerpávacími elektrárnami zanedbatelná.
- Konverze na teplo (P2H) a jeho uložení pro pozdější použití se rovněž běžně používá. Kromě ohřevu teplé vody v bojlerech a klasického vytápění jednotlivých místností akumulačními kamny nebo celých budov v systémech centrálního zásobování teplem, je možno teplo ukládat i pro použití v průmyslových procesech. Elektřina může navíc substituovat jiný zdroj tepla (zemní plyn, biomasa, uhlí) v době, kdy je cena elektřiny nízká v důsledku vysoké výroby neregulujících zdrojů, tj. větrných a fotovoltaických elektráren. O konverzi zpět na elektřinu se v tomto případě neuvažuje. Tento princip je využíván v Dánsku, kde teplárny spalující biomasu využívají nízkých cen elektřiny na spotovém trhu v době vysoké výroby elektřiny z větru. V takových situacích, namísto aby spalovali pro výrobu elektřiny drahou biomasu, nakoupí na spotovém trhu levnou elektřinu z větrných elektráren, kterou použijí jak k pokrytí nasmlouvaných dodávek elektřiny, tak k ohřevu topného média. Díky tomu se 99 % elektřiny vyrobené dánskými větrnými elektrárnami spotřebuje k pokrytí domácí spotřeby energie v Dánsku [DK_CHP].
- Konverze na plyn (P2G) s využitím elektřiny je vyráběn elektrolýzou vodík, který může být použit buď přímo, nebo v dalším termochemickém stupni jako surovina k výrobě syntetického metanu nebo jiných uhlovodíků. Samotný vodík může být v menším množství přimícháván do zemního plynu. Celková účinnost akumulačního cyklu při zahrnutí případné konverze zpět na elektřinu je sice nízká, to však nemusí být problém. Při vyšším podílu obnovitelných zdrojů v energetickém mixu by technologie P2G umožnila efektivně využít elektřinu v době vysoké výroby z neregulujících zdrojů, kdy jsou ceny elektřiny nízké nebo i záporné.
Širší pojetí akumulace energie, které v případě elektřiny zahrnuje i přeměnu na teplo nebo plyn, umožňuje využít širšího spektra technologických řešení. Dostupné akumulační kapacity mohou být v takovém případě o několik řádů větší než při uvažování pouze klasických způsobů akumulace elektřiny. Bude-li využívána elektřina v době nízkých cen na trhu, je akceptovatelná i nízká účinnost případné konverze zpět na elektřinu.
K regulaci elektrizační soustavy lze u většiny technologií použít pouze část v tabulce uvedené akumulační kapacity. Například startovací akumulátory v podstatě nelze využít. Jednak nejsou připojeny do sítě a jednak by se u dnes používaných olověných akumulátorů výrazně zkracovala životnost. Rovněž akumulátory elektromobilů bude možno využívat k regulaci jen omezeně. Na druhou stranu při vyšším podílu OZE v energetickém mixu lze očekávat širší využití technologie P2H v teplárnách.
Ze srovnání vyplývá, že kapacita všech elektrochemických akumulátorů v dopravních prostředcích registrovaných v České republice je řádově srovnatelná s kapacitou přečerpávacích elektráren. Při běžné spotřebě elektřiny v České republice by obě tyto možnosti dohromady vystačily zhruba na jednu hodinu.
Ve srovnání s tím akumulační kapacita podzemních zásobníků zemního plynu v České republice odpovídá v současnosti zhruba třetině roční spotřeby plynu. Do budoucna se přitom zásobníky zemního plynu mají rozšiřovat až na polovinu celoroční spotřeby. V přepočtu na množství uskladněné energie se jedná o množství, které o tři řády převyšuje veškeré možnosti akumulace elektřiny. I při započtení účinnosti přeměny na elektřinu by ze zemního plynu uloženého v podzemních zásobnících bylo možno vyrobit elektřinu pro pokrytí veškeré spotřeby elektřiny v ČR nejméně na měsíc.
Množství energie, které lze uložit do podzemních zásobníků zemního plynu v České republice je větší, než celoroční výroba všech fotovoltaických a větrných elektráren. Jejich kapacita by za určitých okolností mohla být dostatečná pro vyrovnávání výroby a spotřeby i v případě, že by výroba elektřiny byla založena výhradně na obnovitelných zdrojích při vysokém podílu fotovoltaiky a větru v energetickém mixu.
Účinnost konverze na plyn a zpět je u technologie P2G nižší (max. 50 %), než například u přečerpávacích elektráren (běžně přes 70 %). Předpokládá se však, že bude využívána elektřina v době vysoké výroby větrných a fotovoltaických elektráren, kdy její cena bude velmi nízká, v některých případech dokonce záporná. V takovém případě je účinnost konverze vedlejší.*
Ing. Bronislav Bechník, Ph.D., TZB-info
Foto: Klasická přečerpávací vodní elektrárna Dlouhé stráně. Foto archiv/ČEZ